
TRANSPORT PROPERTIES OF LIQUIDS IN RELATION TO 
THEIR STRUCTURE 

By E. MCLAUGHLIN 
(CHEMICAL ENGINEERING DEPARTMENT, IMPERIAL COLLEGE, LONDON, S.W.7.) 

THE subject of transport properties of gases is now comparatively well 
understood and a general theory is available1 which can be used with 
reasonable success to predict these properties for simple gases. For liquids, 
however, no comparable success has yet been achieved. The present Review 
considers the state of the theory of transport properties for simple liquid 
systems and how molecular structure influences these properties for more 
complex systems. High polymers, their solutions, and electrolytes are not 
discussed. 

1. Origin and sign of the transport coefficients 
(a) Origin of the Transport Phenomena.-In the approach to equilibrium 

of a system perturbed by the influence of a concentration, velocity, or 
temperature gradient, the perturbing influence of the gradient tends to be 
eliminated by an irreversible flux or flow of molecular properties down the 
gradient. The flux of mass down a concentration gradient gives rise to the 
phenomenon of diffusion, the flux of momentum down a velocity gradient 
to viscosity, and the flux of heat down a temperature gradient to thermal 
conductivity. Empirical relationships between the fluxes and the forces 
causing them were proposed by Fick, Newton, and Fourier and are given 
by the equations 

J = -DLk/ax, p f  = - $ v / ~ x ,  Q = -AaT/ax . . . (1) 

The proportionality constants D, 7, and X between the forces or gradients 
and fluxes are called, respectively, the coefficients of diffusion, viscosity, 
and thermal conductivity, and ac/ax, av/ax, and aT/ax the corresponding 
gradients in concentration, velocity, and temperature. J ,  p’,  and Q are 
the fluxes of mass momentum and energy per unit time per unit area. 

In addition to the direct effects, various “cross-effects” exist in mixtures. 
Thus mass flow can arise from a temperature gradient and heat flow from 
a concentration gradient so that additional terms proportional to these 
gradients must be added to equation (1) where appropriate. 

(b) The Sign of the Transport Coefficients.-Further general informa- 
tion on the transport coefficients can be obtained from irreversible 
thermodynamics which provides the framework for non-equilibrium 
systems corresponding to that which equilibrium thermodynamics provides 
for a study of equilibrium properties. It therefore shows which results of 
transport theory are of general validity and independent of assumptions 

1 Chapman and Cowling, “The Mathematical Theory of Non-uniform Gases,” 
C.U.P., 1939. 
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about molecular mechanisms or interactions. For the present, attention 
will be restricted to determining the sign of the transport coefficients. 

For an arbitrary change of a system in time dt, the rate of change of 
entropy can be written as a sum of two terms 

dS/dt = d,S/dt + diS/dt . . . . . . (2) 

where d,S represents the entropy change from external sources and diS 
that from irreversible processes inside the system. This internal entropy 
production is zero at equilibrium when all gradients in molecular proper- 
ties have been eliminated, is positive for all other cases, and its rate can be 
calculated from the fundamental laws of macrophysics. It turns out that 
the entropy production is a sum of products of fluxes .Ti and forces Xi of 
the form 

T. d,S/dt = 2 Ji X. > 0 

which was originally proposed by Onsager.2 In addition the laws of Newton, 
Fick, and Fourier suggest linear relationships, at any rate near equilibrium, 
between the fluxes and forces, called phenomenological equations, which 
can be generalised in the form 

. . . . . (3) 
i 

k = l  

Where Lik is the phenomenological coefficient. To determine the sign of 
the transport coefficients the case of two simultaneous irreversible pro- 
cesses can then be considered3 which may be written according to equation 
(4) as 

J1  = L11-G + L12X2; J 2  = L21& + L22& ( 5 )  

The phenomenological coefficients L,, and Lg2 are, for example, related to 
the coefficients of thermal conductivity and diffusion, and the coefficient 
LZl = L12 to the thermal diffusion coefficient. The equivalence of L,, 
and L21, called the reciprocal relations, was proved by Onsager. Combining 
equations (5) and (3), we have 

T.dJ/dt = Ll1Xi2 + (L21 + L,&XIX2 + L22Xz2 > 0 . . (6) 

which from the theory of quadratics requires L,,>O, L2,>0, (L12 + L21)z 
<4L&2. In physical terms this means that the direct transport coeffi- 
cients, e.g., thermal conductivity and diffusion, are positive whereas the 
cross-term interference coefficients can be of either sign. 

Irreversible thermodynamics does not, however, enable numerical values 
of the transport coefficients to be calculated. For this purpose statistical 
theories must be used. 

Onsager, Phys. Review, 193 1,37,405; 193 1 , 38,2265. 
a Prigogine, “Thermodynamics of Irreversible Proce~ses,’~ Thomas, Springfield, 1955. 
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2. Statistical theories of transport phenomena 

Ideally, calculation of the transport properties of liquids requires a 
knowledge of: (1) liquid structure, (2) molecular mechanism of the 
transport process, (3) molecular shape, and (4) molecular force fields. 
In practice, little of this information is available, so that highly simplified 
models are generally considered. These can be divided into two broad 
groups, dense-gas theories and lattice theories, depending on the model of 
the liquid state assumed. 

(a) Dense-gas Theories.-In this approach, due to Kirkwood, Born, 
and Green, and Eisenschitz, an attempt is made to derive expressions for the 
transport coefficients based on the use of a non-equilibrium distribution 
function. These theories, which have been recently re~iewed,~ are still in 
course of development but have as yet yielded little numerical information. 
It is to be hoped that they will ultimately provide for liquids the correspond- 
ing framework that the Chapman-Enskog theory provided for the trans- 
port properties of dilute gases. Two additional theories which are also 
based on the dense-gas approach are due to Enskogl and Longuet-Higgins 
and his co-w~rkers .~ 

(i) Enskog’s theory. In the kinetic theory of dilute gases the transport 
of mass momentum and energy is considered to be due to the motion of 
the molecules between collisions (convective contribution). Compression 
of the gas increases the collision frequency by a factor x which Enskog 
related to the compressibility by the equation 

(PV/RT - 1) = y  = boX/V = bpx . . . !7\, 

where bo = #nNa3 = Mb is the second virial coefficient, (T the rigid sphere 
diameter, and M the molecular weight. In addition, compression increases 
the importance of the collisional contribution to the transfer of energy and 
momentum when these quantities are transported over the distance separat- 
ing the colliding molecules at contact during the instantaneous collision. 
This collisional mechanism cannot affect the diffusion coefficient, which is 
always controlled by a convective mechanism but affects profoundly the 
transfer of momentum and heat. 

With these assumptions Enskog, using an extension of the dilute-gas 
treatment, derived the transport coefficients in terms of the corresponding 
dilute-gas coefficients T ~ ,  A,, and Do to which they reduce in the low density 
limit as 

yV/qobo = l/y + 0.8 + 0.7614 y . . . . . . . (8) 
AV/A,bo = l/y + 1.2 + 0 . 7 5 7 4 ~  . . . . . . . (9) 
Dl1V/Dob0 = l/y . . . . . . . . . . . (10) 

Cole, Rep. Prog. Physics., 1956, 19, 1 .  
Longuet-Higgins and Pople, J. Chem. Phys., 1956, 25, 884; Longuet-Higgins and 

Valleau, Mol. Phys., 1958,1,284; Valleau, ibid., p. 63. 
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Equations (8) and (9) show that ~ / p  and A/p plotted as a function of the 
density p pass through minima at y = 1.146 and 1.151, respectively, with 
values 

[~/p]min. = b~J.545, [A/p]min. = bA02.938 . . . (1 1) 
Fig. l(a) gives theoretical curves for a rigid-sphere gas, and Fig. l(b) 

experimental results for carbon dioxide6 for which all three coefficients 
have been measured. The changing mechanism in heat and momentum 

, - I  I FIG. 1 (6) 

/.O 20 3.0 4.0 50 60 0.2 0.4 0.6 0.8 /.O 
Y p(9. cm.-J) 

FIG. 1. Theoretical and experimental curves on the Enskog theory. 
1 (a) Ordinate: curve A ,  reduced thermal conductivity Av/A,,bo; 

curve B, reduced viscosity ~U/T,&,; 
curve C, reduced self-diffusion coefficient D V/Dobo. 

(Copied substantially from Hirschfelder, Curtiss, and Bird,”‘Molecular Theory of 
Gases and Liquids,” Wiley, N.Y., 1954.) 
1 (b) Ordinate: curve A ,  log (Alp) x (erg ~ r n . - ~  g.-l sec.-l “c-9; 

curve B, log (q/p) x lo5 (cm.2 set.-'); 
curve C, log (Dll/p) x lo4 ( ~ r n . ~  g.-l set.-'). 

transfer causes the thermal conductivity and viscosity curves to pass 
through minima, while in self-diffusion, where no change in mechanism 
can take place, the curve falls continuously with increasing compression. 
The small region in the centre of the thermal conductivity curve for 
carbon dioxide is anomalous (see p. 251) and thermal conductivity data 
for other dense gases away from the critical region exhibit smooth minima. 

To apply equations (8), (9), and (10) to calculating the transport 
properties of real gases, Enskog suggested that the effects of molecular 
shape and force field could be taken into account empirically by fitting b 
in equation (1 1) to the experimental minima and replacing the pressure P 

Robb and Drickamer, J. Chem. Phys., 1951,19, 1504; Lenoir and Comings, Chem. 
Eng. Prog., 1951, 47, 223; Warburg and Von Babo, Wiedemann’s Annalen, 1882, 17, 
390. 
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P = T(aP/aT)V - (aU/aV), . . . . .  (12) 

as defined in thermodynamics, where U is the internal energy by the 
kinetic pressure, as (aU/aV)T is zero for a rigid-sphere gas. Such methods 
reproduce the experimental curves satisfactorily. 

(ii) Theories of Longuet-Higgins, Pople, and Valleau. Longuet- 
Higgins and Pople5 also considered the collisional contribution to viscosity 
and thermal conductivity in a dense gas of rigid spheres and derived the 
exmessions 

1. 

. . . . . . . .  

. . . . . . . . .  

(13) 

which neglect the convective contribution included by Enskog. The 
expression for the self-diffusion coefficient Dll, 

-1 

(1 5 )  
D l l = 4 ( m )  (T rkT * (=- PV 1) . . . . . . . .  

was derived starting from the random-walk diffusion equation D,, = 
<r2>/6 t  where r is the distance travelled by a molecule in a time t long 
compared with the time between collisions. As the mechanism of diffusion 
is purely convective, equation (1 5) reduces to the dilute-gas expression, 
for a gas of rigid spheres, in the low-density limit while (13) and (14) 
which neglect the convective contribution do not. 

Longuet-Higgins and Valleau5 extended the method to a system of 
molecules interacting with a square-well potential, and Valleau5 to rough 
spherical molecules which permit rotational-energy exchange on collision. 
On the latter theory X is twice the smooth rigid-sphere value and the vis- 
cosity equation contains an additional rotational term. This rotational 
viscosity does not attain values greater than about half the shear viscosity 
and vanishes for small moments of inertia, i.e., it can only be important 
for large molecules. 

(iii) Comparison of dense gas theories. The main achievement of the 
Enskog theory is the prediction of the minima in the viscosity and thermal 
conductivity curves (Fig. 1). The models, although indicating the general 
behaviour of the transport coefficients, are not correct in detail. For 
example, the thermal conductivity of simple liquids generally has a less 
steep temperature dependence than viscosity, whereas both theoretical 
approaches predict the same temperature dependence for each coefficient. 

As the absolute expressions could not give good agreement with 
experiment owing to neglect of the attractive forces, transport coefficient 
ratios would be expected to be in better agreement with experimentally 
determined ratios. On the Enskog basis the dimensionless quantity 
rnX/kq equals 3.75, neglecting the ratio of the quadratic terms, while on the 
Longuet-Higgins and Pople theory this ratio is 2.5. Table 1 shows some 
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experimental values of this ratio which are in better agreement with the 
latter value, but as both theories give r] and A the same temperature depend- 
ence neither predicts the temperature dependence of the ratio. 

(b) Quasi-crystalline Models.-In the many theories proposed based 
on the quasi-crystalline model of a liquid, attention has generally been 
directed to deriving an equation for the transport process based on an 
assumed molecular mechanism, leaving as disposable parameters in the 
final equations terms dependent on the molecular force field and the liquid 
quasi-lattice geometry. In tests of these theories empirical methods are 
used to estimate unknown parameters. Of these theories that due to 
Eyring’ has been most widely used for viscosity and diffusion, and that of 
Bridgman8 for thermal conductivity. Andrade’s theorys of viscosity is 
usually applied to metals at their melting point. 

(i) Bridgrnan’s theory of thermal conductivity. Bridgman assumed 
-that in a liquid subjected to a temperature gradient the energy difference 
between successive molecules in adjacent layers was transmitted with the 
velocity of sound, and derived the equation 

X = 3kU, (N/V)Q . . . . . . . (16) 

As no specific molecular force field or lattice geometry was assumed for 
the liquid, the energy difference between successive layers was taken as 
3ka.dTldx using the theorem of equipartition, and a the intermolecular 
distance was approximated to by (V/N)S 

Experimental and calculated values as given in Table 1 agree within 
about 35%. This expression was subsequently modified by Kincaid and 
Eyring,lo using the Eucken factor to take account of the role of the internal 
degrees of freedom, and good agreement with experimental data was 
obtained for a series of polar molecules. 

(ii) Andrade’s theory. In 1934 Andrade derived the expression 

9 = 4vrn/3a . , . . . . . (17) 

for the viscosity of a liquid on the basis of a vibrational mechanism for the 
transfer of momentum. As in Bridgman’s theory, no specific assumptions 
regarding geometry of the liquid quasi-lattice or molecular force fields 
were made, so that v ,  the vibrational frequency, and a have to be estimated 
empirically. For metals it was assumed that v could be taken from the 
Lindemann formula which relates it to the melting point, atomic weight 
M, and atomic volume V, so that equation (17) can be rewritten 
’ Glasstone, Laidler, and Eyring, “The Theory of Rate Processes,” McGraw-Hill, 

N.Y., 1941. 
Bridgman, “The Physics of High Pressure,” Bell, London, 1931. 
Andrade, Phil. Mag., 1934, 17, 497. 

lo Kincaid and Eyring, J.  Chem. Phys., 1938, 6, 620. 
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where C = 3-1 x 10l2 is the constant of the Lindemann formula. As in 
Bridgman's theory, a was taken as (V/N)*. Calculated and experimental 
values of the viscosities which are within about 6% are given in Table 2 
for some metals. However, recent experimental work on the viscosities of 
metals close to the melting point shows that the viscosity rises to anomal- 
ously large values that do not agree with values extrapolated from higher 
temperatures. For example, Yao and Kondicll find a value for tin of 
0.0271 poise at the melting point, compared with a value extrapolated 
from high-temperature data of 0.01 9 poise which compares favourably 
with the calculated value in Table 2. This suggests that the vibrational 
picture neglects other factors which can operate under certain conditions 
(see p. 249). 

TABLE 2. Viscosities of liquids on Andrade's theory. 
Metals at Tf 

Metal 'I x 103 'I x 103 
(poise) (poise) 
(exp.) (calc.) 

Lithium 6.02 5.62 
Sodium 6.95 6.23 
Potassium 5-97 4.99 
Rubidium 6.74 6.20 
Caesium 6-86 6.57 
Copper 40.5 41.8 
Silver 38.8 40.7 
Gold 53.6 57.6 
Indium 19.4 20.1 
Tin 21.4 21.3 

Organic molecules at 3" 
Organic 9 x lo3 9 x lo3 
liquid (poise) (poise) 

(exp.) (calc.) 
n-Pentane 2-24 2-60 
Isopentane 2.14 2-34 
n-Hexane 2.98 3.64 

Cyclopentane 4- 15 3.3 1 
Benzene 6.0 1 4.18 

n-Heptane 3.96 4.79 

Experimental and calculated viscosities of metals from E. N. da C. Andrade, Proc. 
Roy. Soc., 1952, A,  215, 36. Experimental viscosities of hydrocarbons from A.P.I. 
Project 44, 1948-52. 

Justification for using solid-state vibration frequencies for liquid metals 
at the melting point lies in the small volume and heat capacity changes on 
fusion ; however, alternative methods of evaluating the vibrational 
frequency in the liquid state may be used to evaluate 7 from equation (17). 
Table 2 includes values at 25" for the viscosities of some hydrocarbons 
which were calculated by using vibrational frequencies in the liquid 
determined by Barrer12 from entropy considerations. In this case agreement 

l1 Yao and Kondic, J. Inst. Metals, 1952, 81, 17. 
l2 Barrer, Proc. Chem. SOC., 1957, 143. 
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is within about 20%. Calculation of the temperature dependence of 
viscosity on a vibrational mechanism, however, gives too small a tem- 
perature coefficient. 

(iii) The theory of Eying. In this treatment a liquid is considered as a 
quasi-crystalline lattice with a number of holes. The transport process is 
assumed to be due to movement of a molecule from one lattice site to a 
neighbouring vacancy in its own layer. The jump process can then be 
treated by rate-theory methods and the resulting equations for r]  and D,, 
are given by 

a2 (2.rrmkT)*vf*exp (e, /kT) . . . . . (19) 7=a12a,a4 
and 

The quantities a,, a,, a3, and a4 are distances within and between the planes 
of molecules in the liquid, vf is the free volume which is related to the 
fraction of free space in the liquid, and e ,  and el, are activation energies 
per molecule for molecular movement. In the derivation of equation (19) 
it is shown that r]  depends on the applied shearing force; i.e., the flow in 
general is non-Newtonian; however, for small shearing forces the ap- 
proximation given by equation (1 9) is obtained. Equation (20) for the self- 
diffusion coefficient is derived as the limiting case of mutual diffusion in a 
binary mixture. 

Again owing to lack of specific assumptions about the nature of the 
intermolecular forces and lattice structure, e,, el,, v j ,  and the various 
a’s which depend on them have to be estimated empirically. By assuming 
the usual relationship for a, taking e ,  and el, as fixed fractions of the heat 
of vaporisation of the liquid, and calculating free volumes from an 
approximate relationship with the sonic velocity, 37 and D,, have been 
calculated for a series of simple liquids. The results are given in Table 1, 
and although the agreement is not very precise this theory, in one of its 
more empirical forms, can be used to estimate r]  within about 100% for 
the majority of liquids. 

(iv) Theories involving assumed molecular force jields and lattice 
geometry. In a recent attempt13 to calculate the coefficients r]  and Dl1 
for simple liquids, two assumptions were made initially about the structure 
of the liquid quasi-lattice and the molecular force field to avoid empirical 
determination of quantities dependent on these parameters in the final 
equations for the transport coefficients. The lattice was assumed to be 
face-centred cubic, so that relationships between intermolecular distances 
in the liquids are known, and the intermolecular interaction was represented 
by a Lennard-Jones 12:6 potential, enabling molecular diameters o and 

l3 McLaughlin, Trans. Furaday SOC., 1959, 55, 28. 
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force contants c /k  to be obtained from the transport properties of the 
molecules in the gas phase. 

Diffusion in the liquid was considered due to a convective or hopping 
mechanism governed by the presence of nearest-neighbour holes. The 
derived equation for D,, may be written 

kT 4 a2 nh Dll = (2;;m) --+ N exp (- @,/3NkT> . . . . . (21) 

The fraction of holes nh/N, free volume vf,  intermolecular distance a, 
and lattice energy @,, were then calculated from the Lennard-Jones and 
Devonshire theory of liquids and require only a knowledge of Elk, (T, and 
p. The coefficient of viscosity 9 was then obtained by using the modified 
Stokes-Einstein expression 7 = kT/27raD (see p. 246). Calculated and 
experimental values for a series of simple molecules which conform ap- 
proximately to the Lennard-Jones 12:6 potential are given in Table 2 and 
agree with experimental values within about 10 %. 

The coefficient of thermal conductivity of a similar liquid was calculated14 
as the sum of two independent contributions, one vibrational and the other 
convective. The frequency of convective movement was assumed to be the 
same as that operative in self-diffusion, and the frequency for vibrational 
transfer v that given by Corner for an assembly of spherical molecules 
interacting with a Lennard-Jones 12 :6 potential. Calculation of the separ- 
ate contributions showed the convective term to be small (8% of the 
experimental value for argon at its boiling point). The values given in 
Table 1 are therefore purely vibrational hvib. and are calculated from the 
equation 

where C,  is the specific heat per molecule and nh/N is the fraction of 
holes which is small compared with unity in the normal liquid range. 
C14 and C8 are lattice summation constants and r ,  = o2a. Agreement 
with experiment is within about 20 %. 

By way of summary it may be said that at present no completely 
satisfactory statistical theory of the transport properties of puxe liquids 
exists. The condensed state can, like the gas phase, have only one mechan- 
ism of mass transport which is convective; however, heat and momentum 
could be transferred by convective, rotational, and vibrational mechan- 
isms. Present indications suggest that heat is mainly transferred by a 
vibrational process but that momentum can be transferred by a variety of 
mechanisms dependent on the molecular type (see p. 251). As for the case 
of gases, little progress will be made without the introduction of specific 
molecular force fields as basic postulates. 

l4 Horrocks and McLaughlin, Trans. Faraduy Soc., 1960,56,206. 
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3. Relationships between the transport coefficient5 
As the transport coefficients are all concerned with the flux of molecular 

properties, it might be expected that they are interconnected by various 
relationships. Longuet-Higgins and Pople, as pointed out earlier, pre- 
dicted the relationship rnh/kT = 2-5, which, although it turns out experi- 
mentally to be dependent on temperature, is quite well obeyed for a series 
of simple liquids. 

One of the most widely used relationships in the transport properties of 
liquids is the Stokes-Einstein expression kT/Dnrr] = const., where r is the 
radius of a diffusing particle in a medium of viscosity 7. When r is large 
compared with the size of the molecules in the medium (Brownian particle) 
the constant has its Stokes value of 6. For this case the inverse relationship 
between viscosity and diffusion has been derived by the methods of irrever- 
sible therm~dynamicsl~ and is therefore of general validity. However, for 
application to systems where r is comparable with the radii of the molecules 
of the medium, the Stokes equation does not hold. In this case a value of 4 
for the constant is preferred but the relationship is then in practice found 
to be dependent on temperature and concentration The pressure depen- 
dence has recently been tested for liquid mercury by Nachtrieb and Petit.16 
If r is assumed independent of pressure, then at constant temperature 
Dp/D1 = q 1 / p  where the subscripts 1 and P refer to 1 kg.cm.-2 and P 
kg. cm.-2 pressure respectively. The good agreement between these quanti- 
ties is illustrated below and shows that the relationship is not very sensitive 
to pressure. 
P (kg. cm.-2) 1 1950 3798 6079 8366 
DPID1 1 0-957 0.908 0.877 0.828 
T1Ir)p 1 0.958 0.9 16 0.869 0-825 
While viscosity and diffusion in metals do not exhibit exceptional be- 

haviour compared with that in organic substances, thermal conductivity 
does. The problem of the anomalously large thermal conductivity of 
metals was largely solved by Lorentzl who attributed it to conduction 
due to free electrons. He derived expressions for the thermal (A)  and 
electrical (oe) conductivities which, although they could not be evaluated 
explicitly, give a simple ratio 

h r2k2 
__ - 
aeT - 3e2 = 0.245 erg ohm sec.-l O K - ~  O c - l  

where e is the electronic charge. This equation implies that the ratio of 
the thermal to the electrical conductivity is the same for all metals at a 
given temperature and is directly proportional to the temperature. The 
constancy of this ratio was first discovered experimentally by Wiedemann 
and Franz and is confirmed by recent accurate data on a number of metals. 

l5 Onsager, Ann. New York Acad. Sci., 1945, 46, 241. 
l6 Nachtrieb and Petit, J Chern. Phys., 1956, 24, 746. 
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Measurements of electrical resistance may therefore be used do determine 
thermal conductivities of metals which are difficult to measure. 

While the bulk of the thermal conductance in metals is due to free 
electrons, it is of interest to examine the magnitude of the lattice contribu- 
tion Av. This has been done below for a series, Bridgman’s theory being 
used : 

Metal Na Cd Sn Pb Bi 
A,/& experimental (%) 1.1 2.6 3-0 4.4 5.9 
Electrical resistivity, p (ohm. cm.) 10 33 48 95 128 

The data show that the percentage contribution of lattice terms to the 
total thermal conductivity is greatest for the poorest electrical conductors, 
and lowest for the best, as would be expected. It is obvious that for the 
case of metals the ratio rnhlkr) = 2.5 will not hold. 

4. Temperature and pressure dependence of the transport coefficients 
(a) Temperature Dependence.-In the gas phase the coefficients of 

viscosity, diffusion, and thermal conductivity increase with increase 
of temperature, but condensation to the liquid destroys this uniformity of 
behaviour. In a liquid the coefficient of diffusion increases with temperature, 
viscosity decreases, and thermal conductivity, although generally decreas- 
ing with increase of temperature, often increases for complicated structures. 
This diversity of behaviour in the liquid may be indicative of non-singular- 
ity in the transport mechanism. For diffusion alone where the same and 
only mechanism of convective motion is operative in any phase, does the 
temperature dependence have the same sign. 

(i) Simple molecules. The experimentally determined temperature 
dependence of D and r )  of many simple liquids can often be best repre- 
sented by equations of the form 

q = r)k exp EqIRT; D = Dk exp (- ED/RT) . . . . (23) 
where qk and Dk are constants for a particular species and Eq and E D  
are temperature-independent activation energies per mole for viscous 
flow and self-diffusion respectively. If the Stokes-Einstein ratio is 
independent of temperature, differentiation and use of eqn. (23) gives 
Er) + RT = E D ;  but, while the difference is generally of this magnitude, 
ET is often the greater. This derivation is not, however, strictly valid, as 
the Stokes-Einstein equation for small particles is temperature dependent. 

If the molecular processes of mass and momentum transfer involve 
movement over a potential barrier and viscosity is independent of the 
applied shearing force, then barrier heights would be the same for each 
process and decrease with increase of temperature due to lattice expansion. 
Both qk and Dk which also depend on lattice geometry should also be 
temperature dependent. These features are possible with the lattice model 
of 2(b)(iv). However, it shows that compensation between the pre- 
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FIG. 2. Viscosities of o-terphenyl (A ,  curves 2 and 2') and trbhenyfene (B, curve 1). 

(Copied from McLaughlin and Ubbelohde, Trans. Furuduy Soc., 1958,54,1804.) 

progressive increase in viscosity as the freezing point is approached and 
traversed into the supercooled region can be attributed to the non-planar 
shape which facilitates interlocking. Joining of the ortho-rings to make the 
planar triphenylene molecule should then remove the associative capacity 
and equation (23) should be obeyed. This is illustrated by curve 1 in Fig. 2 

l7 McLaughlin and Ubbelohde, Tram. Faruhy Soc., 1958,54, 1804. 
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and confirms the mechanism of the associative process. As ET at high 
temperatures for both molecules is the same, extrapolation of the high- 
temperature data for o-terphenyl to lower temperatures (curve 2’) permits 
the increase in viscosity at any temperature due to association to be evalu- 
ated as the difference between curves 2 and 2‘. This excess viscosity has 
been analysed in terms of the fraction of liquid associated, the theory of the 
viscosity of suspensions being used, and provides a semi-quantitative 
picture of the origin of the excess viscosity. 

Such comparative “chemical” methods can be extended to other systems 
and with other transport property measurements should provide further 
information on the origins of deviations from normal behaviour by 
complex systems. 

(b) Pressure Dependence of the Transport Properties.-For liquids, 
the theories outlined in 2(6)(iii) and 2(b)(iv) indicate an exponential 
dependence of 17 and D on pressure at constant temperature owing to work 
done againt the external pressure in forming a hole which is a pre-requisite 
for convective molecular motion. For many simple liquids this type of 
behaviour is confirmed. Fig. 3 illustrates the fluidity (l/q) of argon as a 

2ooo~ a * .  /O - -  =- 9 

/so0 - 

I00 200 

(OK> 

30 0 

RG. 3. Fluidity of argon as a function of temperature at constant density. 
Densities (g. c m . 9  are for curves: (1) 1.37, (2) 1-31, (3) 1.22, (4) 1-16, (5) 1.10, (6) 

(Copied substantially from Zhadanova, 2. Exp. Theor. Phys. U.S.S.R., 1956,31,724.) 

function of temperaturela for various constant densities. The small tem- 
perature coefficient compared with that at constant pressure tends to con- 
firm the view that the viscosity of simple liquids is controlled mainly by the 
number of holes and does not change appreciably with temperature 
provided this number is kept constant. 

The change of slope in Fig. 3 accompanies the gas-to-liquid transition 
which is dealt with successfully by the Enskog treatment. However, the 

Is Zhadanova, J.  Exp. Theor. Phys. U.S.S.R., 1956,31,724. 

1-02, (7) 0.95, (8) 0.88, (9) 0.78, (10) 0.70. 
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Enskog expressions at high densities indicate that q/qo 21 A/Ao, while 
experimental data show that the relative viscosity is greatest for the most 
complex molecules but the relative thermal conductivity is not sensitive 
to molecular type. For methyl and isopentyl alcohol19 at 11,OOO atm., 
q/qo is 9.95 and 895 respectively, whereas A/Ao is 2.10 and 2.07. In addi- 
tion, while the temperature coefficient of X for simple liquids is negative, 
and for some more complicated liquids like water positive, the pressure 
coefficient, for all liquids so far examined, is positive, being greatest for the 
most compressible liquids. These results indicate that increasing pressure 
favours heat transfer by bringing the molecules closer together for vibra- 
tional exchange which is relatively insensitive to molecular type. 

It is not necessary to distinguish between collisional and vibrational 
transfer mechanisms, as the largest portion of thermal energy transferred 
in a vibration is over the distance between molecular centres at collision 
which should be greater than the distance between molecular edges at the 
beginning of the vibration. 

Sensitivity of viscosity and diffusion to pressure again brings out the 
close parallel in behaviour. This is to be expected since both processes 
involve the breaking off of the intermolecular forces. In diffusion this 
occurs as the molecule moves from site to site, and in viscosity as adjacent 
layers are moving with different hydrodynamic velocities under the in- 
fluence of the applied shearing force, which necessitates continual breaking 
of the intermolecular attractions between molecules in the adjacent layers. 

5. The principle of corresponding states 
While statistical theories aim at calculating transport properties from 

molecular models, it is possible also to correlate behaviour by using the 
principle of corresponding states. On this basis any group of similar 
molecules should have the same values of reduced transport coefficients at 
corresponding temperatures and pressures. 

For molecules interacting with central forces we can write20 

where the dimensionless groups D*, q*, and A* are functions of kT/E 
and Y/N$ only. Little attempt has been made to correlate behaviour on 
this basis owing to lack of data on simple systems interacting with central 
force fields. 

Alternatively, as Elk and (T are related to T, and V,, the critical tempera- 
ture and volume respectively, reduction can be made with respect to critical 
properties as in the generalised viscosity plots of Hougen and Watson.20 

lo Hamann, “Physicochemical Effects of Pressure,” Butterworths, London, 1956. 
2o cf. Hirschfelder, Curtiss, and Bird, “Molecular Theory of Gases and Liquids,” 

Wiley, N.Y., 1954. 



MCLAUGHLIN : TRANSPORT PROPERTIES OF LIQUIDS 25 1 

However, there are indications that at the critical point viscosities21 and 
thermal conductivitieszz reach anomalously large values owing to the 
presence of large clusters of molecules. This phenomena has been detected 
in carbon dioxide and is shown in Fig. l(b) for the thermal conductivity 
plot which is closer to the critical isotherm than the viscosity plot. As the 
transport mechanism for heat and momentum is altering in the critical 
region, the boiling point may be a better reference temperature. For 
example, the viscosities of the normal paraffins C, to C20 are all about two 
millipoises at the boiling point.23 

6. The transport properties of isotopic species 

As the transport properties are influenced by molecular mass, it is of 
interest to compare the properties of isotopic species. Isotopic substitution 
has a negligible effect on E / J E  and U, so that D*, q*, and A* in eqn. (24) 
are unaltered ; therefore 

where the subscript i refers to properties of the isotopically substituted 
species. This ratio is also predicted by the theory of section 2(b)(iv). 
No measurements have yet been made on self-diffusion coefficients of 
isotopically substituted molecules, but this should now be possible by 
using the spin echo technique for pairs such as CH4-CHD, and H,laO- 
H2180 (see section 8). 

Table 3 gives all the known viscosity, thermal conductivity, and square 
roots of the mass ratios for various pairs of molecules. For the non-polar 
pairs with methane and cyclohexane the viscosity ratio is in good agree- 
ment with the square root of the mass ratio. For benzene the deviation 
is probably due to non-central forces (see below). The deviation for the 
pair H,-D2 is due to quantum effects which also influence the thermal 
conductivity ratio. 

Pople has pointed out, however,24 that the viscosity ratio is not given by 
(25) if the intermolecular forces are non-central except in the special case 
when all the atomic masses in the molecule are altered by the same ratio. 
The results in Table 3 show that for water the viscosity ratio is in closer 
agreement with the square roots of the moments of inertia which are 
~ / ( I A ~ / I A )  = 1.340, ~ / ( I B ~ / I B )  = 1-414, and 2/(lci/Ic) = 1.390. Pople 
suggests that for water angular rotations of the water molecules contribute 
appreciably to momentum transfer. On the other hand, agreement of the 
thermal conductivity ratio with equation (25) indicates that rotational 
motion is not important for heat transfer in water. 

21 Michels, Botzen, and Schuurman, Physica, 1957, 23, 95 
22 Guildner, Proc. Nat. Acad. Sci., 1958, 44, 1149. 
23 Nissan, Phil. Mag., 1941, 32, 441. 
24 Pople, Physica, 1953, 19, 668. 
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TABLE 3. Transport coeficient ratios for isotopic molecules 
Molecules T( OK) y i /q  (mi/m>H Molecules T(OK) qi/q A/& (mi/m>i 
CH4, CD, 90.1 1.113 1.119 H20/D20 293.2 1.245 1.043 1.054 
C6H6, C,D, 293.2 1.065 1.038 313.2 1.202 1.053 

311.0 1.062 333.2 1.178 1.060 
332.2 1.058 353.2 1.164 1.050 

311.0 1-062 
333.2 1.060 

C6H12, C6D12293.2 1.064 1.070 H2/D2 20.3 3.216 0.936 1.414 

References to experimental data: methanez5, benzene and cyclohexanez6 , '1 for 
waterz7, h for waterzs, hydrogenz9. 

From the mechanistic point of view agreement of transport coefficient 
ratios with the square root of the masses does not differentiate between a 
purely convective and a purely vibrational mechanism since both are 
governed by the same equation of motion. 

7. The transport properties of mixtures 
While transport properties of one-component systems are fundamentally 

a function of the force constant of the molecular interaction, molecular 
diameter mass, temperature, and volume, yet complications arise in 
mixtures owing to differences in the properties and the introduction of 
concentration effects. For the present, attention will be restricted to binary 
systems. Of these the simplest are mixtures of isotopic species where mass 
effects will be predominantly important. Experimental data on such 
mixtures and the pure components are, however, rare and most work is 
confined to heteromolecular systems. 

(a) Viscosity of a Binary Mixture.-No statistical theory is at present 
available which can be used to calculate the viscosity of a binary mixture 
successfully, so that results are generally represented by empirical laws of 
the form 

where x and 1 - x are the mole fractions. However, the viscosities of most 
binary systems cannot be adequately represented by equation (26) when 
f(y) is q itself, log q, or l/y. Although qmix. is sometimes cubic in x, the 
usual behaviour is quadratic, which suggests equations of the form 

wix. = ~ ~ 1 7 1 1  + 241  - x)712 + (1 - ~)~1722 . (27) 
25 Bresler and Landermann, J. Exp. Theor. Phys. U.S.S.R., 1940,10,250. 
26 Schiessler and Dixon, J. Phys. Chem., 1954,58, 430. 
z7 Hardy and Cottingham, J. Res. Nat. Bur. Stand., 1949, 42, 572. 
2s Challoner and Powell, Proc. Roy. Soc., 1956, A,  238, 90. 
2s Powers, Mattox, and Johnston, J. Amer. Chem. SOC., 1954,76, 5972, 5974. 
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where q12 is associated with the heteromolecular interaction. Some 
mixtures have been analysed30 by using equation (27) and q12 found to be 
independent of x but subject to the usual temperature dependence law 
(equation 23). 

(b) Thermal Conductivity of Binary Mixtures.-As for viscosity, 
experimental data on the thermal conductivity of simple mixtures is 
usually quadratic in x rather than linear. An expression has been derived 
by Bearman31 on the basis of the distribution function type of treatment 
and for a regular solution can be written as 

&nix. - - xh,, ( ;)2 2 + (1 - x) (;)'"f D22 . . . (28) 

where All, D,,, D22;  V,, V,, are the thermal conductivities, self- 
diffusion coefficients, and molar volumes of the pure species 1 and 2 
respectively. V is the mean molar volume and D,, and D,, are self- 
diffusion coefficients of species 1 and 2 in the mixture. The equation was 
applied to the carbon tetrachloride-benzene system, and although giving 
the general shape of the curve it fails to reproduce it quantitatively even 
when fitted at the extremes for the pure constituents. 

(c) Diffusion in a Binary Mixture.-While the subjects of viscosity 
and thermal conductivity of binary mixtures are still undeveloped from the 
theoretical point of view, more progress has been made for the case of 
diffusion. The coefficient of self-diffusion, which is, in reality, the property 
of an equilibrium system, is given by the theory of random processes as 
Dll = <r2>/6 t ,  where <r2> is the mean square displacement of a 
particle in a time t long compared with the time between collisions. It is 
usual in measuring so called self-diffusion coefficients, however, to use 
isotopically labelled molecules which differ effectively only in mass from 
the parent substance and then define the diffusion coefficient in terms of 
Fick's law. 

According to equation (4) there are n2 diffusion coefficients in an n- 
component system. Onsager showed that of these only (r~-- l )~ are inde- 
pendent, so that diffusion in a binary mixture can be represented by a single 
diffusion coefficient called the mutual diffusion coefficient. Attempts have 
been made to relate the various diffusion coefficients in a mixture to the 
mutual diffusion coefficient D. Hartley and Crank32 derived the equation 

D = V1cl D ,  + V 2 c 2 D 1  . . . . . (29) 

where D1 and D, are the intrinsic diffusion coefficients, c1 and c2 the 
concentrations, and V ,  and V2 the partial molar volumes of species 1 and 2. 

30 Hind, McLaughlin, and Ubbelohde, Trans. Faruday SOC., 1960,56, 328. 
31 Bearman, J.  Chem. Phys., 1958,29, 1278. 
s2 Hartley and Crank, Trans. Faraday SOC., 1949, 45, 801 

2 
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This equation takes account of the phenomenon of mass flow across a 
section fixed relative to the ends of the diffusion vessel first treated by 
Darken,33 and is due to relief of the pressure gradient built up by the 
different mobilities of the two particles. This equation, however, assumes 
no volume change on mixing. The intrinsic diffusion coefficient which is 
defined with reference to a cross-section moving with the mass flow 
velocity is connected with the mobility of the particle oj in the mixture by a 
thermodynamic term 

d In a Xj 

d In Xj Vicj D .  =mjkT-*- . . . . . . (30) 

when the assumptions are made that a molecule moves with a velocity 
proportional to the diffusion force given by vi = oj. dpj/dx and the Fick 
diffusion coefficient D j  is defined by Jj = cj v j  = - Dj, dcj/dx. It is 
assumed here that the gradient of chemical potential dpi/dx is the force 
causing diffusion rather than the concentration gradient. This can be 
shown to be a direct consequence of the extension of the second law of 
thermodynamics to non-equilibrium systems. aj in equation (30) is the 
activity. Combining equations (29) and (30), we have 

kT+x1m2FET . . . - 1 d In a,  

when the Duhem-Margules equation is used. Equation (31) has been 
for some binary systems with ujkT replaced by the tracer self- 

diffusion coefficient in the mixture and gives the general shape of the 
experimental curve. It has also been modified by assuming that the 
mobilities, which are the inverse of the friction coefficients, are determined 
mainly by the viscous forces. 

At present, although diffusion in mixtures has not been successfully 
treated statistically, the thermodynamic approach outlined has provided 
some insight into the phenomenon. Equation (29) shows that the mutual 
diffusion coefficient depends on concentration, because D1 and D, are not 
in general equal, and jn addition tends to the self-diffusion coefficient of 
the species present in vanishingly small concentration. In tracer measure- 
ments therefore from equation (29) D+ Dll, as cl, the tracer concentration 
is small, so that the self-diffusion coefficient of the non-isotopic species 
should be corrected for the mass effect by using equation (25). 

The above treatment of mutual diffusion still assumes that the flux of a 
particular species is dependent on its own gradient of chemical potential 
alone and not as in the Onsager equation (4). Application of equilibrium 
thermodynamics to correct for non-ideality is not likely to be seriously 
in error for small gradients. 

33 Darken, Trans. Amer. Inst. Mining, Met. Eng., 1948, 175, 184. 
Carman and Miller, Trans. Faraday Soc., 1959,55, 1831. 
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(d) The Soret and Dufour Effects.-On the basis of equation (4) it can 
be seen that coupling effects can occur in transport processes in mixtures. 
By Curie’s such coupling can only occur between quantities of 
the same tensorial character so that, while diffusion forces and heat fluxes 
can couple and vice versa, neither can be coupled with viscous processes. 
In non-electrolyte systems therefore two effects exist due to the coupling of 
diffusion and heat conduction. In the first case, a concentration gradient is 
set up in the mixture as the result of a temperature gradient (Soret effect or 
thermal diffusion) and a temperature gradient is set up when two sub- 
stances diffuse into each other (Dufour effect). These coefficients are given35 
by ST = D1/D and D, 2 D1/X, where D1 is the diffusion coefficient due 
to the temperature gradient. Although both effects have been found in 
gases, the Dufour effect has not been found in liquids. This arises because 
D for gases is about lo5 times larger than for liquids whereas the Soret 
coefficient for both states is of the same order of magnitude. In addition, 
h for liquids is about 10-100 times greater than the gas value so that the 
Dufour effect is 106-107 times smaller in the liquid phase. Moreover, 
the heat of mixing and the time lag before the maximum temperature 
gradient is formed would tend to make the effect difficult to observe. 

Molecular kinetic theories have been proposed for the thermal diffusion 
process. The theory of Hibby and Wirtz3‘j is developed by considering the 
relative tendency of a molecule to undergo diffusion by an activated process 
in a liquid mixture subjected to a temperature gradient and thus causing a 
concentration gradient to be set up. The equation derived may be written 

where q~~ and q~~ are component parts of the activation energy for the 
process due respectively to the energy necessary to detach a molecule from 
its neighbours to allow flow to occur and to the energy to create a hole 
necessary to accommodate it. Prigogine and his c o - ~ o r k e r s ~ ~  derived a 
similar equation with q~~ = q ~ ~ .  D e ~ ~ b i g h ~ ~  has given a thermodynamic 
treatment which results in an equation formally similar to (32), showing 
that ST is independent of concentration for ideal mixtures. This has been 
confirmed by Prigogine’s experimental results. 

8. New experimental techniques 
Recent developments in the field of piezoelectric crystals and nuclear 

magnetic resonance have provided new experimental techniques for the 
study of transport properties. In the former, developed principally by 
Mason,39 the effects of a viscous medium on the electrical characteristics of 

35 de Groot, “Thermodynamics of Irreversible Processes,” N.H.P., Amsterdam, 1958. 
36 Hibby and Wirtz, 2. Physik, 1943, 44, 369; Wirtz, 2. Naturforsch., 1948, 30, 672. 
37 Prigogine, de Bouckere, and Amand, Physica, 1950, 16, 577. 
38 Denbigh, Trans. Faraday SOC., 1952,48, 1. 
39 Mason, Trans. Amer. Soc. Mech. Eng., 1947, 69, 359. 
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a torsionally excited quartz crystal have been developed for measuring 
viscosity at high shearing rates and should provide important information 
on shear relaxation phenomena in liquids. 

In the nuclear magnetic resonance field the spin echo phenomenon has 
been analysed in terms of a diffusion process and applied to the measure- 
ment of self-diffusion coefficients by McCall and his c o - ~ o r k e r s . ~ ~  In this 
case it is possible to measure directly the self-diffusion coefficient since 
only nuclear properties are involved in differentiating the diffusing 
particles. In both techniques pressure can be varied as readily as tempera- 
ture so that significant new information should be obtained. 

40 Douglass and McCall, J. Ph-vs. Chem., 1958, 62, 1102. 




